Sem/edx company in US near me? Scanning electron microscopy with energy dispersive xray spectroscopy (SEM-EDS) was used to identify the particles. The SEM showed an elevated concentration of iron and iron oxide in the impacted areas. The backscatter electron (BSE) image which correlates brightness in the image with atomic density, highlighted the iron particles that were embedded in the tile and the EDS spectrum confirms the PLM Image chemical composition of these higher density particles.
Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
The client was able to determine the source of the black dust was due to the mechanical breakdown of the foam cushions in the impacted room, and not from mold or mildew growth. The experienced analysts at MicroVision Labs were able to differentiate the foam materials from either blown cellulose or urethane foam insulation or air filters, allowing for the client to easily remove the problem cushions.
We are proud to announce that MicroVision Labs is now accredited to the ISO/IEC 17025:2017 standard. This represents over a year of diligent effort from all of our staff to verify and validate our in house SOP’s and transform our quality management system to one that is compliant to this international standard. This certification requires that accredited labs demonstrate that they are competent and can produce technically valid data and results unlike other certifications such as ISO 9001:2015. This represents an obvious value to our clients. Discover a few extra info at Microvision labs eds mapping.
Do you give lab tours? Yes, we routinely give lab tours to our clients and potential clients. Please call and we would be happy to schedule a tour for you and your co-workers. Do you have other locations around the country? We do work for companies all across the United States, with one laboratory which is located in Chelmsford, Massachusetts. Did MicroVision Labs ever operate under a different company name? No, we have always been MicroVision Laboratories, Inc. Our founder, John Knowles, used to work for another laboratory that underwent several name changes (Eastern Analytical Laboratories, Industrial Environmental Analysts, American Environmental Network, Severn Trent Laboratories, and EMLab P&K Billeria) and was located nearby in Billerica. When that laboratory was closed in 2008, John hired a few of the remaining analysts and acquired its equipment, client list and phone number.
Our membrane autopsy service uses a combination of microscopy techniques to examine filtration membranes and identify the elemental and chemical composition of any foulant materials present. This analysis also categorizes the degree of fouling and notes any other causes for poor performance, such as physical damage to the membrane surface. MicroVision Labs has extensive experience examining a wide variety of RO, UF and MF membranes, including hollow fibers, cartridge, spiral wound, and tubular membranes. Explore extra details at https://microvisionlabs.com/.